Ultrasonic-electrodeposition of hierarchical flower-like cobalt on petalage-like graphene hybrid microstructures for hydrazine sensing.

نویسندگان

  • Yaping He
  • Jianbin Zheng
  • Sheying Dong
چکیده

A facile, one-pot ultrasonic electrochemical method to synthesize hierarchical cobalt (Co)-nanoflowers on petalage-like graphene (GE) was developed. The hybrid microstructures were successfully evaluated as a new material for highly sensitive determination of hydrazine (N(2)H(4)). Scanning electron microscopic measurements displayed that the synthesized Co-GE exhibited a related hierarchical structure of a petalage-like GE homogeneous distribution as a matrix for the growth of smooth nanosheets-assembled Co nanoflowers. Co-GE was confirmed by energy dispersive X-ray spectrograms. Electrochemical methods were adopted to characterize the sensing properties of Co-GE towards the electrocatalytic oxidation of N(2)H(4) at 0.15 V in 0.1 M pH 7.0 sodium phosphate buffered saline. The sensor displayed a broad linearity of 0.25-370 μM and 370 μM to 2.2 mM with a relatively low detection limit of 0.1 μM (S/N = 3) and a response time of less than 3 s. Furthermore, the sensor showed outstanding sensitivity and reproducibility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrochemical Deposition of Flower-Like Nickel Nanostructures on Well-Defined n-Si (111):H

In this paper the electrodeposition of nickel on n-Si(111):H substrate, in the presence of sulphuric acid, was studied. Cyclic voltammetry has been used to characterize the electrochemical behavior of the system. The nickel deposits had a flower-like morphology with the sphericalnanostructure nucleus, distributed uniformly on the surfaces of the prepared n-Si(111) substrate.

متن کامل

Facile one-pot synthesis of flower-like AgCl microstructures and enhancing of visible light photocatalysis

Flower-like AgCl microstructures with enhanced visible light-driven photocatalysis are synthesized by a facile one-pot hydrothermal process for the first time. The evolution process of AgCl from dendritic structures to flower-like octagonal microstructures is investigated quantitatively. Furthermore, the flower-like AgCl microstructures exhibit enhanced ability of visible light-assisted photoca...

متن کامل

Investigation on the Effects of the Formation of a Silver “Flower-Like Structure” on Graphene

In this report, we experimentally investigate the formation of "flower-like silver structures" on graphene. Using an electrochemical deposition technique with deposition times of 2.5 and 5 min, agglomerations of silver nanoparticles (AgNPs) were deposited on the graphene surfaces, causing the formation of "flower-like structures" on the graphene substrate. Localized surface plasmon resonance (L...

متن کامل

Facile, one-pot solvothermal method to synthesize ultrathin Sb2S3 nanosheets anchored on graphene.

Ultrathin, two-dimensional (2D) nanosheets of layered transition-metal chalcogenides are theoretically and technologically intriguing. However, it still remains a great challenge to synthesize ultrathin nanosheets because of the lack of an intrinsic driving force for the anisotropic growth of 2D superposed microstructures. Here we demonstrate, for the first time to our knowledge, the in situ sy...

متن کامل

Facile Electrodeposition of Flower-Like PMo12-Pt/rGO Composite with Enhanced Electrocatalytic Activity towards Methanol Oxidation

A facile, rapid and green method based on potentiostatic electrodeposition is developed to synthesize a novel H3PMo12O40-Pt/reduced graphene oxide (denoted as PMo12-Pt/rGO) composite. The as-prepared PMo12-Pt/rGO is characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results reveal that graphene oxide (GO) is reduced to th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Analyst

دوره 137 20  شماره 

صفحات  -

تاریخ انتشار 2012